Sago starch-filled linear low-density polyethylene (LLDPE) films: Their mechanical properties and water absorption

Author(s):  
I. D. Danjaji ◽  
R. Nawang ◽  
U. S. Ishiaku ◽  
H. Ismail ◽  
Z. A. Mohd. Ishak
2015 ◽  
Vol 35 (8) ◽  
pp. 793-804 ◽  
Author(s):  
Md. Dalour Hossen Beg ◽  
Shaharuddin Bin Kormin ◽  
Mohd Bijarimi ◽  
Haydar U. Zaman

Abstract The aim of this research is to investigate the effects of different thermoplastic starches and starch contents on the physico-mechanical and morphological properties of new polymeric-based composites from low density polyethylene (LDPE) and thermoplastic starches. Different compositions of thermoplastic starches (5–40 wt%) and LDPE were melt blended by extrusion and injection molding. The resultant materials were characterized with respect to the following parameters, i.e., melt flow index (MFI), mechanical properties (tensile, flexural, stiffness and impact strength) and water absorption. Scanning electron microscopy (SEM) was also used in this study for evaluating blend miscibility. MFI values of all blends decreased as the starch content increased, while the sago starch formulation showed a higher MFI value than others. The incorporation of fillers into LDPE matrix resulted in an increased in tensile modulus, flexural strength, flexural modulus and slightly decreased tensile strength and impact strength. However, sago starch filled composites exhibited better mechanical properties as compared to other starches. The SEM results revealed that the miscibility of such blends is dependent on the type of starch used. The water absorption increased with immersion time and the thermoplastic sago starch samples showed the lowest percentage of water absorption compared with other thermoplastic starches.


2001 ◽  
Vol 20 (2) ◽  
pp. 167-172 ◽  
Author(s):  
R Nawang ◽  
I.D Danjaji ◽  
U.S Ishiaku ◽  
H Ismail ◽  
Z.A Mohd Ishak

2015 ◽  
Vol 37 (11) ◽  
pp. 3167-3174 ◽  
Author(s):  
S. Sánchez-Valdes ◽  
E. Ramírez-Vargas ◽  
L.F. Ramos de Valle ◽  
J.G. Martinez-Colunga ◽  
J. Romero-Garcia ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 771-779
Author(s):  
Jing Deng ◽  
Qi Jue Chen ◽  
Ding Jie Chen ◽  
Luo Jie Zheng ◽  
Wen Li ◽  
...  

The aim of this research was to probe the potential application of nano-titanium dioxide (TiO2)/basic magnesium hypochlorite (BMH)-containing linear low-density polyethylene (LLDPE) composite film in grape fresh-keeping. Mechanical properties, transparency, barrier performance and antibacterial activity of the nano-composite membrane were measured, and results showed that the antibacterial zone diameter of TiO2/BMH on pathogen-Aspergillus niger was 31.4 mm, with mixing ratio of BMH/TiO2 to 2:1. It was clearly shown that the synthesized nano-composite films decreased mechanical properties and transparency of the membrane, and also had a significant impact on sensory score, mass loss rate, decay rate, ascorbic acid (Vc) content and titratable acid content compared with LLDPE films. Moreover, the results revealed that the LLDPE antibacterial film can be effectively used for storing grapes, preserving the flavor of grapes and had an obviously effect in prolonging grapes’ shelf life.


Sign in / Sign up

Export Citation Format

Share Document